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Earth Observation (EO) data are increasingly being used by governments use to make key development decisions. 
The COVID-19 pandemic is a case in point. As the pandemic impacted society’s most vulnerable disproportionately, 
effective delivery of social protection required more timely and localized data - two critical benefits EO offers users.

EO broadly applies to any tools or technologies that measure the characteristics of air, water, and land. This may be 
as simple as a thermometer or as complex as a constellation of satellites. Although ground-based observations and 
the technologies through which they are derived form a key component in the whole of EO, for this paper, we will 
focus primarily on the use of space-borne EO technologies.

The power of space-borne EO data lies in its ability to add detail to the geospatial and temporal location of data, its 
ability to fill in data gaps because of limits in access to certain regions of a country, its capacity to complement major 
surveys and censuses for finer temporal granularity, and its ability to validate other in-situ data, such as household 
surveys. EO data also has the potential for integration with other data sources through modeling and simulation, 
allows for greater data use within non-technical policy communities via maps and other visualizations, and provides 
citizens with a means to participate in decision-making and hold their political leaders to account.

Harnessing EO data for sustainable development requires governments to work with new partners in the data 
ecosystem. This paper aims to address weaknesses in information-sharing across stakeholders, a key challenge 
precluding Global South-based countries’ use of EO data, and provides initial guidance to countries on leveraging 
partnerships for better use of EO. Our guidance draws from interviews with select institutions in West Africa that 
have begun to use EO data for evidence-based policymaking and SDG attainment, as well as similar experiences 
documented in the literature.

To frame our findings, we focus on identifying the most pressing challenges for institutions in the Global South to 
harness EO data, centered around a set of high-level characteristics: Capacity, Processes, Policies, and Infrastructure.

We define capacity as human abilities and knowledge, as well as the requisite institutional arrangements, enabling 
environment, leadership, and accountability. Regarding leadership, our findings highlight that the stakeholders 
engaged in using EO for sustainable development decisions are perceived to have relatively high levels of interest 
and power in the decision-making process. Yet, there is a general lack of awareness and trust amongst policymakers 
in West Africa on using EO and its value for evidence-based decision-making. Our interviews also revealed that 
developing and retaining human capacity is another clear obstacle, primarily due to the inability of West African 
institutions to compete with international salary levels.

Process challenges are becoming less acute with the rise of cloud computing and key technologies to provide 
analysis-ready data along with the emergence of uniform data standards. However, the expense of foundational IT 
systems, combined with unreliable power grids, remain impediments to the growth in EO data use. Additionally, the 
complexity of the regulatory framework that allows for private-public partnerships is a major policy challenge, and, 
increasingly, individual privacy considerations are coming into play as imagery reaches very high-resolutions.

TReNDS’ earlier work on the effective use of big data for national SDG monitoring provides a partnership typology 
to assist national governments in selecting the right type of partner to overcome critical challenges. We find the EO 
partnership landscape to be equally as diverse and complex, with similar obstacles, and as such, we have applied our 
big data partnership typology to demonstrate how countries can optimize EO data partnerships.

Executive Summary

https://www.bigdatasdgs.com/
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To leverage EO data for decision-making, we’ve aligned the types of partnerships necessary to overcome the greatest 
challenges along the Data Value Chain – the process of taking raw data and converting into actionable information 
for decision-makers. To successfully access satellite imagery (a type of EO) and generate data from these images, the 
first step in the data value chain, requires funding, as access to commercial data, particularly at very high-resolutions 
is expensive. However, policies regarding access are often missing or out-of-date, and out-of-date. Legal partners can 
help establish effective legislative frameworks that enable data sharing while safeguarding privacy.

The second step in the data value chain – processing and retrieval - requires costly high-speed computing facilities, 
and these facilities supplement the growing use of cloud computing. Local processing requires laptops, workstations, 
and specialized software that are also expensive. Funding partners to support these costs must be complemented by 
experts in human resource retention and training strategies. 

Moving up the value chain, to data analysis and services to foster decisions and actions, requires a stronger pipeline 
of technical expertise and capabilities to communicate both the findings and their accuracy. Partners with relevant 
experiences in translating findings can help devise strategies that align communication with client segments.

With this in mind, we acknowledge that a more extensive assessment framework is necessary to leverage the full 
value of EO data for sustainable development. This framework would recognize human resource capacities, have 
well-defined policies and processes, reliable and scalable infrastructure, and effective governance arrangements 
that ensure the process adheres to local social norms and conventions. The framework would also be sustained 
by capable and ethical people, supporting laws and regulations, policy frameworks, and key stakeholders that are 
empowered to act and are driven by their interest in harnessing this vital data source for sustainable development.

Such a framework should also reflect the role of local, national, and international support. A second key extension 
to the framework accounts for the maturity of an organization’s current state and the steps needed to progress 
to higher states of maturity. Through this comprehensive framework, we can arrive at a series of conclusions to 
demonstrate effective approaches, identify areas of improvement, and suggest policies to increase the effectiveness 
of big data and the sub-systems of which they are composed. 
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Achieving the Sustainable Development Goals (SDGs) is a complex challenge for all countries, but particularly for 
countries in the Global South. And the COVID-19 pandemic has only further exacerbated these issues for lower-income 
countries – reversing years, potentially decades of progress (UN Statistics Division, 2021).

Fortunately, over the past several years, via the growth of innovative non-traditional data sources, including big data, 
more timely, relevant, and granular data and information have revealed their potential for evidence-based decisions, 
a necessary component for achieving the SDGs. Consequently, the potential for big data to support SDG attainment 
has incited considerable enthusiasm across stakeholders within the data ecosystem.

In an earlier research phase, SDSN TReNDS undertook a systematic review of the recent scientific literature on innovative 
data collection methods and the use of big data to support national monitoring of the SDGs (Sustainability Science, 
2021). A repository of the innovations is available online at www.bigdatasdgs.com, mapped to each of the SDGs. The 
results from the systematic review demonstrate a range of potential use cases for different types and sources of big 
data, with Earth Observation (EO) data highlighted as the dominant type (Allen et al., 2021).

Additional research has also highlighted EO’s potential for SDG attainment. For example, the Committee on Earth 
Observation Systems (CEOS) suggests that EO data has a role to play in most of the 17 SDGs (Anderson et al., 2017). 
Additionally, a recent assessment highlights that existing EO systems could generate data for 33 SDG indicators across 
14 goals (Kavvada et al., 2020), and a 2021 United Nations Economic and Social Commission for Asia and the Pacific 
(UNESCAP) review of countries using non-traditional data sources specifically for SDG monitoring highlighted more 
than 20 countries using EO and geospatial data for various initiatives (UNESCAP, 2021).

However, harnessing the breadth and complexity of EO data for decision-making remains a challenge for many 
governments - particularly in the Global South where physical and digital constraints are critical barriers and reliable 
digital infrastructure and connectivity is a continuing issue. Irrespective of a country’s experience in harnessing EO 
data for development, governments must work with new partners and entities to support their development agenda.

Within this context, this paper provides reflections for countries aspiring to leverage EO data for SDG attainment by 
highlighting key obstacles and bottlenecks to use, with a particular focus on the Global South (namely West Africa), 
and the types of partnerships that may prove beneficial to overcoming these challenges.

The paper synthesizes experiences from countries in the Global South and the West African region that have successfully 
undertaken EO partnerships, as well as insights from the latest research collaborations that are incorporating these 
data to support SDG monitoring and SDG-friendly policies. Lastly, it aims to provide a conceptual framework for 
understanding the actions needed to improve the use of EO data for sustainable development and guidance on 
building partnerships to support these efforts.

The paper is structured as follows:

•	 Section 2 summarizes key EO data concepts and definitions and discusses its value proposition for sustainable 
development.

•	 Section 3 provides an overview of the EO data landscape.

•	 Section 4 describes the country case studies which form the primary basis for our analysis.

•	 Section 5 provides a summary of the findings from our country use cases.

•	 Section 6 highlights some initial reflections on partnerships to address the most pressing bottlenecks along the 
data value chain that are necessary for EO data to support SDG attainment in the Global South.

•	 Section 7 identifies potential next steps for future research.

1.	 Introduction
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2.

Big Data Attributes and the Growth of EO Data
EO data are a component of big data - a term that describes large volumes of high velocity, complex, and variable 
data that require advanced techniques and technologies to enable the capture, storage, distribution, management, 
and analysis of the information (Gandomi & Haider, 2015). The occurrence of big data is largely a post-millennium 
phenomenon and has become widespread only as recently as 2011 (Sivarajah et al., 2017). Its rapid emergence has 
been enabled by advances in computational power, ubiquitous and mobile computing, networked storage, new forms 
of database design, new modes of software-mediated communication and transactions, and data analytics that utilize 
machine learning (Kitchin, 2015). 

Big data have several distinct attributes that distinguish them from other data sources. These attributes (Table 1) are 
important for understanding the contribution of big data to many development applications (MacFeely, 2019).  

The Value of Earth Observation 
Data for Sustainable Development

Table 1. The 10Vs of Big Data  
[17-21, 23]

CHARACTERISTIC DEFINITION

VOLUME The number of data records, their attributes, and linkages

VELOCITY The speed at which they are produced, received, processed, and understood

VARIETY The diversity of data sources, formats, media, and content

VOLATILITY The changing technology and data storage

VERACITY The trustworthiness of the origin and availability

VALIDITY The accuracy, reliability and quality of the data

VALUE The business value of data collected

VARIABILITY The meaning of data continues to change

VULNERABILITY The personal nature of data and the need for privacy and security

VISUALIZATION The poor scalability and functionality
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Earth Observation Data’s Utility 
The power of EO data lies in its ability to add detail to the geospatial and temporal location of data, its ability to fill 
in gaps in data records because of limits in access to certain regions of a country, its capacity to complement major 
surveys and censuses for finer temporal granularity, and its ability to validate other in-situ data such as household 
surveys (United Nations, 2017).  

Along with filling data gaps, EO data has the potential to be integrated with other data sources through modeling and 
simulations (Hargreaves & Watmough, 2021). This fusion of data represents the overall power of big data usage. Big 
data-based models allow analysts to capture the complexity of current human-natural systems, which in themselves 
vastly increase the amount of data available. EO data also allows experts to analyze and model conditions with 
geographic precision, to create maps and other visualizations that allow for greater capacity to target support, and to 
provide citizens with a means to participate in decision-making and hold their political leaders to account. As a result, 
earth observations, geospatial data, and derived information can play important roles in monitoring SDG targets. 

The nature of big data makes it a disruptive force in the way analysis and research are conducted. Big data, combined 
with artificial intelligence, have revolutionized the landscape of research, analysis, and modeling.  

In the context of the SDGs, big data may offer solutions to data deficits where traditional approaches have so far fallen 
short (MacFeely, 2019). In national statistical systems (NSS), big data sources have a strong value proposition as they 
can serve a range of purposes, with key opportunities including (Tam et al., 2015; Florescu et al., 2014; Klein, 2017):

•	 	Increasing the scope, breadth, and quality of statistical insights from existing and new metrics, including the 
SDGs.

•	 Enabling more timely data products to fill gaps in time series or meet new demands for real-time data products.

•	 	Increasing the granularity of existing datasets by enabling small area estimates.

•	 	Reducing costs and reporting burden associated with traditional surveys.

•	 	Driving innovation in new methodologies and attracting new talent. 

Earth Observation has been accepted as a key source of “big” information for decision-making, particularly since 
LandSat imagery became widely available in the 1970s (Hua-Dong Guo et al., 2015). Initially used to monitor natural 
processes, particularly those dealing with vegetation and land cover, its use has expanded to address all phases of 
disaster response, disease monitoring, and levels of economic development. Now, if one accepts the advent of the 
“Fourth Industrial Revolution” these data sources are increasingly linked to other technologies in the “Internet of 
Things” (IOT) (Schwab, Klaus, The Fourth Industrial Revolution, 2016, World Economic Forum).  

Tools That Harness EO Data for the SDGs 
Since the adoption of the 2030 Agenda and its SDGs, sources of EO data have become more prevalent, and the tools to 
translate these data into actionable information are more readily available. For example, a handbook published by the 
United Nations Task Team on Satellite Imagery and Geospatial Data (UNGIWG) in 2015, highlighted the contributions 
that were possible from EO for National Statistics Offices (NSOs). Importantly, the effective use of the information in 
satellite imagery can have a transformational impact on many of humanity’s most significant challenges, such as helping 
global scientists, resource and planning managers, and politicians better monitor and protect fragile ecosystems, ensure 
resilient infrastructure, manage climate risks, enhance food security, build more resilient cities, reduce poverty, and 
improve governance, among others (United Nations, 2017). 
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Earth Observation (EO) broadly applies to any tools or technologies that measure the characteristics of air, water, and 
land. This may be as simple as a thermometer or as complex as a constellation of satellites (Schmidt, 2005). Although 
ground-based observations and the technologies through which they are derived form a key component in the whole 
of EO, for this paper, we will focus primarily on the use of space-borne EO technologies. Nevertheless, as the Internet of 
Things (IOT) grows, an increasing level of fusion among systems and platforms is taking place. With the focus on space-
born EO, this section provides a brief primer on EO data and its application to the SDGs and sustainable development. 
It also provides a short discussion of how EO data links to the concept of big data.

Space-Born EO Types

Space-borne platforms, for the most part on satellites, have several key advantages that make them particularly apt 
for EO. For example, polar-orbiting satellites can observe wide swaths of the earth, while geo-synchronous (stationary) 
satellites can provide regular images over specific areas, both on a regular and repeatable basis. The data from these 
satellites also provide a long-term record of images across the years of the particular platform or mission life, with 
some dating back to the 1970s. Altogether, they provide an efficient and often open access to the data, such as in the 
case of NASA and EU Copernicus missions (USGEO, 2016 and CEOS, 2018).

Commercial satellites offer access to high-resolution data, some at a resolution of less than a meter, as well as the 
capability to target specific areas for monitoring (Demirel & Bayir, n.d.). The satellite industry is led by several companies, 
such as Maxar and Airbus, who have maintained large platforms for over a decade. However, the recent emergence of 
small satellites launched in large constellations has the potential to provide greater coverage and at very high levels 
of resolution (Werner, 2019). Yet, all of this potential comes at a cost to the user that is oftentimes beyond the reach 
of countries in the Global South, particularly in West Africa.1

There are a myriad of types of satellites, as they each operate using different means to observe the Earth. The types 
of satellites include the following (NASA, 2017):

•	 	Passive Satellites receive solar or thermal radiation as input for images. These may operate primarily in the 
optical-visual spectrum or collect data at hyperspectral levels. Optical satellite images are relatively ubiquitous in 
the sense that they largely portray the Earth as humans would see it. Hyperspectral images offer the means of a 
deeper understanding of biological processes.

•	 	Active Satellites generate the radiation and then collect its reflectance from the Earth. Radar imagery is one 
such type. In particular, synthetic aperture radar (SAR) is increasingly used to understand weather, biological, 
and hydrological processes. These images, depending upon their polarization, are not affected by cloud cover, 
and thus, are particularly useful in the humid tropics. Additionally, because they generate their own radiation, 
the geometry of reflected beams allows accurate three-dimensional images to be generated.

1  Recently, the Norway Ministry of Climate and Environment has partnered with Planet Labs, Kongsberg Satellite Services, and Airbus Industries to 
provide high-resolution monitoring of the tropics and these data may be available to research institutions (NICFI, 2022).

3.	 A Primer on Earth Observation 		
	 Data
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Light Detection and Ranging (LiDAR) imagery is becoming increasingly available. LiDAR uses laser radiation to reflect 
off the Earth, providing a point cloud that can then provide three-dimensional images. This is particularly useful in 
looking at the canopy structure of forests, monitoring ice, and determining the structure of built-up places. LiDAR 
can be obtained by aircraft as well as ground units.  Currently, there are two NASA missions; ICESat and GEDI. The 
ICESat mission is primarily focused on glaciers and polar mapping, though some data are available for forested areas. 
The GEDI platform is attached to the International Space Station and provides similar data. Unfortunately, both are 
inactive over arid zones in an effort to prolong the life of their lasers, which limits their utility in the more arid zones 
of West Africa.

Both SAR and LiDAR imagery offer tremendous advantages, particularly when combined with spectral imagery. 
Spectral imagery is simpler to process, using common algorithms, while SAR data requires considerable treatment 
in order to make sense of the images.  Similarly, the analysis of LiDAR imagery is complicated. Increasingly, however, 
the EO community is seeking to provide “analysis-ready data” (ARD) that removes the burden of processing from the 
end-user.

NASA and ESA Copernicus Constellations
The NASA and the ESA Copernicus missions have opened the floodgates for EO data. Both space agencies have 
programs targeted on applications in the Global South and are actively used by researchers and analysts throughout 
Africa.

COPERNICUS: The European Union leads the Copernicus program in partnership with the European Space Agency 
(ESA) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), which was initiated 
in 1998. The constellation consists of seven satellites providing high resolution spectral and radar imagery. Data are 
organized across five services:  Land, Marine Environment, Atmosphere Monitoring Services, Climate Change Service, 
and Emergency Management Services. Data are available from 1998 and are guaranteed to continue until 2035 (Jutz 
& Milagro-Perez, 2020).

NASA CONSTELLATIONS: NASA maintains 30 active earth observation missions, several of which are jointly carried 
out with other national space agencies. Another ten missions are planned in 2022 and 2023, with an additional 
seven by 2031 (NASA, 2017). The Earth Observing System (EOS) is an international program, comprising a series of 
coordinated polar-orbiting satellites designed to monitor and understand key components of the climate system and 
their interactions through long-term global observations. The EOS missions focus on the following climate science 
areas: radiation, clouds, water vapor, and precipitation; the oceans; greenhouse gasses; land-surface hydrology 
and ecosystem processes; glaciers, sea ice, and ice sheets; ozone and stratospheric chemistry; and natural and 
anthropogenic aerosols.
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For this report, we interviewed five local institutions in the Global South and West African region to develop a 
better understanding of their use of EO data to support policy implementation and development initiatives for SDG 
attainment. The institutions included:

4. Country Use Cases 

The Centre de Suivi Écologique (CSE) was established in 1986 by the Senegalese government with 
the support of the United Nations Program for the South Sahara Region (UNSO) and the Danish 
International Development Agency (DANIDA). The center aims to provide data and information for 
natural resource management in West Africa. CSE works under the technical supervision of the 
Senegalese Ministry of the Environment and currently receives funding from UNSO and the United 
Nations Development Programme (UNDP).

Core to its mission, CSE utilizes remote sensing technology to collect, analyze, and disseminate 
data related to environmental monitoring and natural resource management for evidence-based 
decision making in Senegal and throughout West Africa. To achieve its mandate, CSE maintains a 
professional team of 40 engineers and technicians with diverse specializations in geomatics, natural 
resource management, and environmental assessment, information, and training. The center provides 
useful information for decision-making, particularly in the management of natural disasters, such 
as floods, and establishes early warning systems based on spatial analysis of vegetation and brush 
fires. To achieve its mandate, CSE works in collaboration with a diverse set of actors, including the 
Senegalese Government, international development organizations, and local cooperatives, to utilize 
spatial data for environmental and resource management. 

The Institut privé supérieur d’Etudes spatiales et Télécommunications (ISESTEL) is a private higher 
education institution in Burkina Faso. Founded in 2011 in the capital city of Ouagadougou, ISESTEL 
provides graduate-level training in GIS and related technologies.

The National Space Research and Development Agency (NASRDA) is the national space agency 
of Nigeria, which works to promote space science and technology in the country. The agency is 
based in the capital city of Abuja and is regarded as one of the most advanced space agencies in 
Africa (Giles, 2018). Since its founding in 1999, NASRDA has launched four satellites into space, 
with ambitions of furthering research in the areas of rocketry and satellite development, as well 
as in satellite data acquisition, processing, analysis, and management of related software. NASRDA 
works under the authority of the Federal Ministry of Science and Technology.

Centre de Suivi Écologique (CSE), Senegal

Institut privé supérieur d’Etudes spatiales et Télécommunications (ISESTEL), Burkina Faso 

National Space Research and Development Agency (NASRDA), Nigeria

https://www.cse.sn/
http://isestel.org/
https://nasrda.gov.ng/
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The Regional Centre for Mapping of Resources for Development (RCMRD) was established in Nairobi, 
Kenya in 1975 under the auspices of the United Nations Economic Commission for Africa (UNECA) 
and the Organization of African Unity (OAU), known today as the African Union (AU). RCMRD is an 
inter-governmental organization and currently has 20 Member States in the Eastern and Southern 
Africa regions which include: Botswana, Burundi, Comoros, Eswatini, Ethiopia, Kenya, Lesotho, 
Malawi, Mauritius, Namibia, Rwanda, Seychelles, Somali, South Africa, South Sudan, Sudan, Tanzania, 
Uganda, Zambia, and Zimbabwe.

RCMRD provides GIS and Information Communication Technology (ICT) services with the global 
mission of promoting sustainable development through geospatial information technologies. Since 
its founding, the center has been instrumental in regional capacity building in the field of remote 
sensing, GIS, and natural resource assessment and management in Africa. It has also played an 
important role in helping countries establish their National Mapping Agencies. To date, RCMRD trains 
more than 3,000 technical officers each year from its member states and other African countries 
in the fields of surveying and mapping, remote sensing, GIS, and natural resource assessment and 
management, and implements numerous projects on behalf of its member states and development 
partners.

The Centre for Remote Sensing and Geographic Information Services (CERSGIS) began in 1990 
as the Remote Sensing Application Laboratory, established by the University of Ghana and the 
Environmental Protection Agency of Ghana. CERSGIS provides remote sensing and geographic 
information systems (GIS) services for sustainable development planning. In particular, they specialize 
in remote sensing and GIS services for land and water resource appraisal, as well as support local 
capacity development for geospatial information management, and offer trainings in geographic 
data visualization and data collection. Throughout its tenure, the center has worked with a number 
of govern-ment, NGOs, and private sector partners, including producing a national digital map of 
current land use and land cover using satellite image data on behalf of the Environmental Protection 
Agency of Ghana. CERSGIS was also recently involved in the development of spatial databases for 
mapping land use and land cover changes, desertification, and flood hazards. 

Regional Centre for Mapping of Resources for Development (RCMRD), East Africa and Southern Africa

The Centre for Remote Sensing and Geographic Information Systems (CERSGIS), Ghana

Africa’s Satellites and Space Policy
There are 14 national space agencies in Africa, and a total of 44 satellites have been launched, of which a handful 
offer earth observation capabilities, though many are targeted for military purposes (Firsing, 2015). The African Union 
(AU) has been instrumental in expanding the use of EO on the continent. For instance, in 2016, it established an 
Africa-wide space policy with the goals of greater regional integration in addressing user needs, accessing space 
services, developing a regional market, adopting good governance and management, coordinating the African space 
arena, and promoting intra-Africa and other international cooperation (AU. HRST/STC-EST/Exp./15 (II) 2017). This 
policy has supported the Africa Resource Management Constellation, which has been in development since 2009, 
and is coordinated by the South Africa National Space Agency (SANSA) in collaboration with the Algeria, Kenya, 
and Nigeria space agencies. Nigeria currently operates one earth observation satellite, while South Africa has an 
upcoming EO satellite planned (Space in Africa, 2019). Additionally, the AU collaborates with the European Union on 
the Global Monitoring for Environment & Security and Africa program, which includes funding regional consortia in 
the development of services (largely based upon Copernicus data that address key environmental and security issues 
in the region) (European Commission, 2022).  

http://rcmrd.org/about-us
https://cersgis.org/
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Leveraging EO data for SDG attainment requires collaboration across many actors and entities. As identified by the 
World Bank World Development Report (2021), a well-functioning national data system requires “people to produce, 
process, and manage high-quality data; people to populate the institutions that safeguard and protect the data 
against misuse; and people to draft, oversee, and implement data strategies, policies, and regulations.”

Other frameworks describe the characteristics of effective data use similarly. Demchenk (2014) characterizes a 
data ecosystem by its components: models, management, analytics, infrastructure, and security. Drawing closer to 
sustainable development, Menon (2017) describes the associated big data ecosystem in terms of capacities, processes, 
policies, infrastructure, and stakeholders (Menon, R. 2017).  And the recent TReNDS’ report (2021) characterizes the 
SDG big data ecosystem in terms of the seven roles that stakeholders play (Allen, C.; Cameron, G.; and Dahmm, H. 
2021). These definitions, and others, describe different aspects of the same whole.

Assessing the full range of actors and entities necessary to leverage the value of EO data for sustainable development 
is beyond the scope of this research. To frame our findings from our case studies, we have chosen to focus on two 
critical aspects. 

First, is the set of high-level characteristics that institutions and individuals require to harness EO data: Capacity, 
Processes, Policies, and Infrastructure. These characteristics were chosen as they align with the frameworks referenced 
above and because they provide a natural organizing principle for describing the key challenges described in the 
case studies. The second aspect touches upon the political economy aspects of leveraging EO data by assessing key 
stakeholder interests and agency to bring EO data into decision-making. 

Turning to the first aspect, a review of literature and field consultations in West Africa have identified several common 
challenges facing countries as they seek to use EO to inform sustainable development decisions. 

Capacity

Capacity extends beyond human abilities and knowledge. It encompasses the requisite institutional arrangements, 
enabling environment, leadership, and accountability. One of the primary capacity challenges that has been identified 
focuses on perceptions and understanding amongst stakeholders, particularly decision-makers.  

Based on our interviews, there is a general lack of awareness and trust amongst policymakers in West Africa on using 
EO and its value for evidence-based decision-making. This lack of trust is partly due to EO and big data’s departure 
from tradition, including the use of imagery rather than land surveys and the use of EO-derived proxies instead of 
population surveys. 

Trust gained by stakeholders in EO findings may be lost if the resulting decisions have not effectively accounted 
for uncertainty, precision, and standard errors. And it is incumbent upon analytical partners to effectively describe 
uncertainty, accuracy, and other sources of error to all -users, particularly decision-makers, so that they are aware of 
the context in which the information is used and to develop trust in EO data.

At a fundamental level, particularly in West Africa, our interviews revealed that developing and retaining human 
capacity is also a challenge. Turnover and the drain of human resources is high, particularly as a result of the inability 
of national institutions to compete with international salary levels (UNESCO, 2018). Potential staff with the requisite 
skills are also lacking, thus allowing for vacancies in key analytical positions. 

5. Findings
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Further, the Global South, particularly Africa, tends to be isolated from emerging science in the field of EO. Fortunately, 
in recent years, this is gradually improving, as space agencies, particularly Copernicus and NASA ARSET, international 
programs such as the FAO and GEO, and others through online courses, offer training in the use of satellite imagery. 

Processes

Transforming EO data to inform effective decisions for sustainable development requires overcoming process challenges. 
Addressing these challenges requires collaborations to complement and extend data and analysis, particularly to 
address information requirements at highly localized levels where increased resolution, timeliness, discoverability, 
and interoperability are required

Data management and data storage have become less challenging with the advent of cloud computing and a reduced 
need for downloading data with the ability to apply analyses in the cloud to imagery. Key technologies that have been 
applied in Africa include the increased use of Google Earth Engine (GEE) and TensorFlow, and the use of data cubes 
through the Australian-financed Digital Earth Africa initiative (DEA). For instance, both GEE and DEA have been applied 
to the monitoring of illicit mining.2  These technologies provide analysis-ready data in an open format, and GEE has an 
additional advantage of providing a visualization platform. Some institutions have developed high-speed computing 
capacity, which offers a supplement to cloud-based solutions, but these centers are often oversubscribed and not 
available to users outside of the institution that owns the center.  

Uniform data standards have increasingly been applied, primarily based upon the ISO system in Africa. In spite of this, 
the data products from imagery analysis are not well-documented in terms of their metadata (Alford, 2009). Recently, 
an initiative has begun to certify data archives according to international standards. This process, which includes 
peer review of data products, will enhance the reliability and trustworthiness of analytical products. However, the 
certification process is expensive and time-consuming, and this acts as a deterrent to wide application.s

Policy

There are a number of policy-related conditions that create challenges to EO data use. While these conditions may 
be categorized under the rubric of policy, they require consideration from not only government, but also from the 
private sector. There is a level of complexity of the regulatory framework applicable to EO that may negatively impact 
access, use, and interoperability. Among these, the application of fees for data access acts as a barrier. It may be 
widely understood why commercial imagery and statistical data may carry fees, but the application of fees for access 
to government data, particularly weather data, has stifled its use. In both the cases of commercial licensing fees and 
government fees for statistical data access, an agreed means of either providing funding or reducing access costs to 
the levels appropriate for use by regional institutions should be sought.

In addition, national security policies prevent the exchange of geospatial data, particularly high-resolution imagery 
and the use of unmanned aerial vehicles, such as drones. This is highly important in West and East Africa where large 
swaths of territory are insecure and inaccessible. While high-resolution imagery may provide important insights in 
areas that are unsafe for travel, imagery access should be controlled in order to avoid it falling into the wrong hands. 

Increasingly, as imagery reaches very high resolutions, individual privacy considerations are coming into play. Google’s 
Street View capability has already moved forward by masking out certain identifiable features that were collected by their 
roving camera equipment. And at the country-level, Ghana, for example, has an agency responsible for data privacy, 
which may eventually enact measures to ensure privacy protection with satellite imagery (Schneidman et al., 2021).

2  See further details here: https://www.digitalearthafrica.org/media-center/blog/digital-earth-africa-detecting-landscape-change-and-unregulat-
ed-mining 

https://www.digitalearthafrica.org/media-center/blog/digital-earth-africa-detecting-landscape-change
https://www.digitalearthafrica.org/media-center/blog/digital-earth-africa-detecting-landscape-change
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Regional economic communities and continental bodies offer important venues for policy dialogue on the application 
of EO. As previously mentioned, the AU maintains EO programs and has developed a space policy as part of their overall 
science and technology policy to engage national actors on a common set of objectives. The Economic Community 
of West African States (ECOWAS) has similarly been engaged in a dialogue on harmonization of land cover/land use 
change approaches and their use to address national policy.  

Infrastructure

Currently, spatial data infrastructure (SDI) remains in the realm of governments, international organizations, and 
research institutions. However, there has been considerable discussion on the need for increased SDI in Africa. 
Fortunately, some advances have been achieved in West Africa, particularly in Ghana, Côte d’Ivoire, Senegal, and 
Burkina Faso (Lance, 2003).  For example, Ghana has a governmental agency directly responsible for data protection, 
and other countries have a federated system. Similarly, the international community has moved forward with 
common geospatial data and metadata standards as well as standards to certify data archives. However, for these 
architectures and standards to be broadly applied, national resources are required along with international expertise.  

Many of the large internet content providers, particularly Google, Amazon Web Services, IBM, and Microsoft, maintain 
cloud infrastructures that enable bringing models and algorithms to the data and allow the fusion of various data 
sources. These are being increasingly applied in the exploitation of EO data, and cost and the reliability of access 
continue to be a constraint, particularly throughout most of Africa (SERVIR Global, 2017). Further, while some research 
institutions, such as the Kofi Annan Center in Ghana, and NSOs have high-performance computing clusters capable 
of undertaking large-scale analyses at a very high-resolution, they are often in high demand and unavailable for the 
long-time frame needed for these analyses.

The most frequently mentioned challenge to the use of EO in West Africa and elsewhere in Africa deals with physical 
and digital constraints. Internet speeds are low and capacity-limited, and access is expensive. Combined with an 
unreliable power grid, it is also prone to outages. Some programs, such as the Global Monitoring for Environment and 
Security (GMES), have addressed this by establishing ground stations for the download of data, which is helpful, but 
also requires additional preprocessing of imagery before it can be effectively analyzed, requiring increased storage 
and computing capacity that otherwise would be available on the cloud.

Connectivity is a continuing issue in terms of speed, cost, and reliability. It remains very costly to access high-
bandwidth internet, and the dependency on low-speed connections, often over mobile phone hotspots, mean that 
data download times are extensive, even when computing is cloud-based. Continual issues with electrical power 
outages are closely linked to this. Furthermore, both Internet and electrical infrastructure may not be keeping pace 
with technological advances. Niger, for example, has only recently introduced a 4G network, while Europe, many 
parts of Asia and the Americas are moving to 5G (McKetta, 2021). Additionally, extremely low speeds mean that data 
downloads—even downloads of analytical products—may take several hours to days. Internet subscription prices 
in West Africa are substantially more expensive than the Americas, Asia, and Europe (Monks, 2019), which limit the 
quantity of data to be transferred within the budgetary constraints of an individual or institution. This is partly due to 
the lack of competition and level of state control over fiber optic lines, as well as business models that fail to prioritize 
the importance of an ICT infrastructure as an essential service versus a luxury.
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Mapping Stakeholders

Stakeholder mapping offers the means to identify the actors, their roles, and their capacity to bring data into decision-
making. This process has several benefits; it increases the level and breadth of participation in the decision-making 
process, it ensures a holistic definition of the necessary information required to make an effective decision, and it 
identifies potential points of entry to strengthen partnerships and capacities that, in our case, leads to greater value 
from the use of EO for sustainable development.

Stakeholder mapping also helps to narrow the gap between researchers and decision-makers. As de Sherbinin, et al. 
(2022) highlight; researchers seek to understand cause and effect relationships, while policymakers are looking for 
credible information from trustworthy sources within timeliness and relevance constraints. By looking at the relative 
power and interest levels of stakeholders, we can be more precise in terms of identifying communities of practice 
that may be organized to address key decision points, the information required, and levels of capacity necessary for 
this effort to be effective.

The matrix in Figure 1 below, based upon a set of structured interviews of experts in the West Africa region, shows 
an aggregate mapping of power and interest among key national organizations found in six African countries, four of 
which are from West Africa. Although the power and interest of specific organizations vary, particularly from country 
to country, several key points stand out from this aggregate representation. Firstly, for the most part, the stakeholders 
engaged in using EO for sustainable development decisions are perceived to have relatively high levels of interest and 
power in the decision-making process. Secondly, the higher-level government institutions and international actors 
stand out above the more local organizations (with the sole exception of the military, who control a considerable 
amount of EO data, but play a relatively small role in sustainable development decision-making). This latter aspect 
compares markedly with satellite image providers, who have a high level of interest, but are perceived as having low 
levels of power in sustainable development decisions within the African context.

Figure 1: Power and Interest Matrix 
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EO Data Within the Data Value Chain

Data, including big data, have no intrinsic value on their own. Value accrues as the data are transformed into decisions. 
This follows a well-discussed sequence, first proposed by Ackoff (1989) and modified by others3. The sequence  
follows the transition of data to information, then to knowledge, and ultimately, wisdom. As we consider the value 
chain for EO data, as shown in Figure 2, we see that the data generation leads to data retrieval, and information 
is garnered through analysis and the provision of information services. Knowledge occurs in the transition of the 
information to decisions, which then becomes wisdom as the previous decisions inform those of the future.

6. 	Actions to Improve Use of Earth 		
	 Observations for SDG Attainment

3  Baskarada, S. and Koronios, A.; 2013. Data, Information, Knowledge, Wisdom (DIKW): A Semiotic Theoretical and Empirical Exploration of the Hierarchy 
and its Quality Dimension. Australasian Journal of Information Systems · November 2013. R. I. Jony, et al. Big Data Characteristics, Value Chain and 
Challenges 2016; and Faroukhi et al. Big data monetization throughout Big Data Value Chain: a comprehensive review. J Big Data (2020) 7:3. See also, 
T.S. Eliot: The Rock

Figure 2: EO Data Value Chain

Suffice it to say at present, that data are only as valuable as the effectiveness of resulting decisions, and that an 
understanding of how EO data are transformed into decisions is important. Further, actions that lead to SDG 
achievement in specific cases may provide important lessons to others as EO is applied; i.e., learning from the 
application of EO results in the wisdom for its application elsewhere—replicability.  Finally, the optimal use of EO 
data also increases the value of other data used for SDGs by increasing their validity, location precision, and overall 
completeness. 

The previous section highlighted several key challenges from the literature review and case studies for the effective 
use of EO data to support development decisions. In Figure 3, we have aligned the most pressing challenges to the 
different components of the data value chain. 

https://www.digitalearthafrica.org/media-center/blog/digital-earth-africa-detecting-landscape-change


19

Addressing the Challenges of Using Earth Observation Data for SDG Attainment: Evidence from the Global South and West Africa Region

EO Partnerships for SDG Attainment

TReNDS’ earlier work on the effective use of big data for national SDG monitoring provided a partnership typology to 
assist national governments in selecting the right type of partner to overcome critical challenges (Allen et al., 2021). 
For leveraging EO data for decisions, the partnership landscape is equally diverse and complex as for any big data 
source. This is due to EO data’s many attributes, which as described above, require sophisticated techniques and 
technologies to enable the capture, storage, distribution, and analysis. For example, in addition to data providers, 
government entities using EO data may need to partner with a technical service and technology providers to gain 
access to these capabilities if they are not available in-house. To initially explore the possibilities and contributions of 
EO data sources, knowledge brokers or convening organizations may be also needed to raise awareness and build 
trust among the various partners. Additional funding is also often needed to get big data projects off the ground, 
which can benefit from an executive sponsor to champion a business case for internal funding allocations, or an 
external donor willing to provide funding. Lastly, a legal or data privacy partner to assist in navigating the regulatory 
landscape is another important partner that is often overlooked.

Completing Figure 3, the type of partner has been aligned to each segment of the data value chain to address the 
most pressing concerns.

Figure 3: Aligning Partners to Meet the Most Pressing Challenges Along the Data Value 
Chain
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Data Generation and Access

While the location and nature of EO imagery are relatively well-known and the means of access are clear, there remain 
two essential issues. First, access to commercial data, particularly at very high-resolutions, is expensive and requires 
some level of donor support. As imagery is increasingly combined with in situ or ground sensor data, analytical 
partners are often left to fend for themselves in their discovery and access. Second, there is no clear consistency in 
the cataloging and documentation of in situ data among various existing platforms, and policies regarding access are 
often prohibitive.

Analytical capabilities are challenged to access data that are fit-for-use [see below sidebar]. As EO is applied to 
increasingly local requirements, the level of resolution, both temporal and spatial, are increasing. In addition to cost 
and computing requirements, the suitability of imagery is challenged. This is particularly true in humid zones where 
cloud cover over long periods of time, or at critical periods (e.g., flooding) make optical imagery difficult to use.  

Fortunately, there are emerging solutions, such as cutting-edge Artificial Intelligence algorithms that provide cloud-
free EO data intelligence in near time (Aspia Space Clear Sky Web),4 but these are proprietary and require considerable 
preprocessing before their use. Additionally, NASA has provided training to several regional institutions in Africa 
on approaches that mitigate the cloud cover issue, and these have been successfully applied in crop and forest 
degradation monitoring.

Along with technical and data providers, legal support as legislative frameworks have not kept pace with technological 
advancements and do not extend to arrangements with platform providers or EO data sources. There may also be 
shortcomings in the legal framework governing the processing, use, or transmission of data including cybersecurity, 
data privacy, and data protection. In such cases, the legislative framework for EO organizations may first need to be 
strengthened. 

However, establishing effective legislative frameworks that enable data sharing while safeguarding privacy, in 
general, have proven challenging. Governments will need to invest considerable efforts in establishing an effective 
authorizing framework. In lieu of this framework, government and quasi-government data agencies have used ad 
hoc arrangements to facilitate big data sharing, often in the form of MoUs or more formalized agreements with 
data providers or other partners.5 This helps set the ground rules for how big data sets can be combined, protected, 
shared, exposed, analyzed, and retained, and these rules would apply naturally to EO data. However, negotiating 
these agreements can create significant delays in EO data projects and will require early advice from legal and privacy 
partners to navigate the regulatory landscape.

It is also worth mentioning that external partnerships do not necessarily equate with donor funding. A variety of 
approaches to partnership are available, and these approaches may be tailored to the specific challenge at hand. For 
example, mobile phone providers are increasingly partnering on projects to enable information to be disseminated 
to a broader population on food security and crop production issues (Decuyper et al., 2014). As such, publicly-funded 
data providers and analytical partners provide information, while the private sector enables targeted distribution. 
This process may also work in reverse where mobile phone and internet providers enable citizen scientists and the 
general public to provide in situ data that then can be combined in EO analyses. 

The commercial satellite imagery market is also engaging in such efforts, and a dialogue with them may allow 
for targeted programs to free data for critical services. This dynamic may also empower national space agencies,  
although they may lack satellites, to facilitate this data exchange. From this exchange, two objectives are achieved: an 
increased open flow of information and increased societal benefits from national space agencies.

4 See website for further information: https://aspiaspace.com/
5  See case study for examples: https://contractsfordatacollaboration.org/static/files/un-environment-and-google-case-study_3.pdf 

https://aspiaspace.com/
https://contractsfordatacollaboration.org/static/files/un-environment-and-google-case-study_3.pdf 
https://www.digitalearthafrica.org/media-center/blog/digital-earth-africa-detecting-landscape-change
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Fitness-for-Use Considerations When Selecting EO Imagery
The use of EO imagery to inform decisions regarding the achievement of the SDGs is a valuable asset, but not a magic 
bullet. Several questions should be answered to make an effective choice on the EO source:

•	 RETURN RATE AND LATENCY: What is the timeframe for decision-making? The return rate (frequency of images 
being provided) and the latency (waiting time) for images are important considerations when selecting imagery. 
Certain analysis-ready data are comprised of mosaics of the best available individual images. In certain situations, 
particularly for addressing disasters, these images will not provide an accurate image of the current situation.

•	 LENGTH OF DATA RECORD: Some changes require several years to be detected or can be affected by seasonal 
variations. In order to remove these interannual variations and determine a reliable trend, longer-term imagery 
records should be used. Thus, even though certain data sources may be more advanced, higher in resolution or 
capabilities, longer-term records may be more reliable.

•	 RESOLUTION: What is the scale of the phenomenon to be analyzed? Small areas, such as buildings, agricultural 
plots, and water bodies require higher-resolution imagery. Broader changes, such as vegetative quality and 
urbanization, may be detected by lower-resolution imagery.  Higher-resolution implies the need for higher 
computing power. Lower-resolution images are more freely available and require less computing power.

•	 ACCURACY: An image, particularly when presented in a format that resembles human visualizations of the state 
of nature, assumes a level of certainty that may be misleading.  Analysts should be explicit in their description 
of accuracy, validity, and uncertainty. End-users should look for such descriptions and effectively communicate 
this to decision-makers.  

•	 	COST AND SUSTAINABILITY: Consideration of the ability to replicate analyses using the available imagery given 
the financial resources at hand is also important. Potentially costly high-resolution imagery may provide an 
excellent analytical product at present, but the costs of replicating this for continual monitoring may exceed 
available budgets. Further, some satellite missions have limited lifespans and may not be replaced. Analysts 
should be aware of the end objective of the analysis to be provided and the technology lifespan to be applied.

•	 DATA VOLUME: As discussed previously, long-range and high-resolution data require a large storage and 
computing capacity. These constraints are mitigated through the use of cloud computing, but attention must 
also be paid to the cost of access to cloud computing, particularly where internet limitations exist.

Data Processing and Retrieval 

Turning to the Data Processing and Retrieval segment of the value chain, sustained and predictable physical 
computational and processing capacity, human resources talent management, and IT reliability are the major 
obstacles to be overcome. Several West African institutions have established high-speed computing facilities, and 
these facilities supplement the growing use of cloud computing. Demand continues to exceed capacity, however. The 
management and operation of these facilities remain challenging, particularly with respect to unstable or unreliable 
electrical power supplies. Additionally, basic equipment, such as laptops and workstations, remain very expensive 
relative to the local economy. Software is also prohibitively expensive, and counterfeit or hacked versions are found 
throughout the region. Many programs have moved to open source software that can be freely obtained, but this 
requires higher levels of expertise to provide the functionality that proprietary software has. Further, as the software 
industry moves from stand-alone licenses to cloud-based subscriptions, the recurring fees and inability to make 
international payments excludes many from access.



22

Addressing the Challenges of Using Earth Observation Data for SDG Attainment: Evidence from the Global South and West Africa Region

6  See platform here: https://wacren.net/en/network/infrastructure-maps/.

In addition, for human resources to be effective, their capabilities must be nurtured and retention schemes must 
be in place to transform the fit-for-purpose data into evidence for decision-making. A multi-pronged approach to 
upskilling employees is also essential. After establishing a baseline measurement of staff capabilities, HR strategies 
must be refreshed to leverage best practices and accelerate capacity building. Refreshed strategies should include 
developing training and curricula and  fostering communities of practices. To assist, external partners with experience 
in devising these strategies and training programs will be critical. These may include private sector entities or twinning 
arrangements with other EO-data intensive institutions that can provide direct advice and mentoring.  Academics 
and universities will also continue to prove important by providing a pipeline of future graduates able to perform 
EO processing. As mentioned earlier, cloud-based approaches may be a fundamental, but necessary shift in the 
processing of information and provide a cost-effective alternative to data centers, as new platforms provide easy 
scalability.

Data Analysis and Services

Considerable effort has been made to establish human resource capacity in the use of EO. For instance, space agencies, 
international organizations, and regional programs regularly train specialists in the science and methodologies to use 
geospatial imagery. The global demand for these skills exceeds supply, and particularly in West Africa, a promising 
and talented analyst is likely to be snatched up by a Global North-based organization that can pay a much higher 
salary. Further, on-site training often qualifies a young analyst for a sponsored scholarship, which in turn, takes that 
talent away. Opportunity is a fine ideal, and the approach to counter this is to ensure that there is sufficient depth in 
personnel to adapt to the departure of others.

Furthermore, analytical partners in the region, who are responsible for the provision of information and services are 
challenged to effectively communicate findings. There remains a tendency among professionals in the region and 
internationally to focus their communication to their peers with an emphasis on peer-reviewed scientific journals. 
The peer-review process is critical in the validation of the science applied, but decision-makers have different format 
demands, and analytical partners should consider the end-users in the format in which information is provided. 
SERVIR West Africa has addressed this through the inclusion of end-users in the communities of practice that co-
develop services, thus ensuring that the service itself is fit-for-purpose.

The format for communicating findings is important, but it is equally important to communicate the uncertainty that 
surrounds these findings. Analytical partners can be challenged to maintain end-user trust in the face of uncertainties 
of the product, and analytical partners are often hesitant to admit uncertainty for fear of the findings being dismissed. 
The Food and Agriculture Organization (FAO) has outlined robust guidance on how to document accuracy, variance, 
and uncertainty, and these can serve as standards as services are disseminated (FAO, 2016).

Human resource strategies must develop current and future staff for both Data Processing/Retrieval and Data 
Analytics and Services segments of the value chain. Engaging with credible industry and global experts to stay 
abreast of the latest tools and technologies is critical. More generally, the refreshed HR strategy should touch upon 
the recruitment, talent management, training, performance management, and compensation factors essential for 
a talented and effective staff. To recruit and hire people with the right skills, some governments are moving away 
from passive approaches and are fast-tracking the staffing process to be competitive in the marketplace. In West 
Africa, the West and Central African Research and Education Network (WACREN) offers a platform through which 
government and non-government actors partner with academia to develop, promote, and sustain human resource 
capacity in the region.6

https://wacren.net/en/network/infrastructure-maps/.
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Decisions and Actions

The impact of EO products is largely based upon developing trust in EO and their relevance to the local decision 
context. Indeed, trust is earned through accuracy, but also from being able to provide the right information, at the 
right time, and in the right format. Co-development of services with the direct engagement of end-users helps to 
ensure this. In addition, transparency in the process and product allows for a greater understanding of the findings. 
Black box solutions are giving way to solutions based upon open science principles. External partners, international 
organizations, NGOs, universities, and donor-funded programs are and should continue to provide technical support 
and training in open-source solutions, and some countries, such as South Africa, have mandated this. Rather than 
a requirement, open-source solutions should be encouraged through administrative guidelines, and sufficiently 
trained personnel should be maintained by government actors. Equally, government actors may take advantage of 
a growing private sector fee-for-service market in the region.

Whole-of-government responses to leverage their data to respond to the COVID-19 pandemic have relied on brokering 
and convening functions to align data products to support near real-time decision-making. These intermediary 
functions are critical to converting data into actionable evidence for SDG attainment. These intermediary activities are 
necessary at various staffing levels throughout the organization. For example, senior management may be engaged 
in crafting the overall strategy for aligning new data products to the most pressing policy needs. Whereas, at the 
technical level, multi-disciplinary teams must come together to ensure integrating data from disparate sources is 
done with minimum information loss. External partners with experience in developing these intermediary processes 
can support EO organizations that are only beginning to develop these capabilities. 

Data sharing agreements at various levels may be negotiated that ensure the access, quality, and security of the 
data, while protecting intellectual property rights as well as privacy. Governments can offer guidelines in terms of 
property and privacy rights.  Other organizations can provide the model data sharing agreements and guidelines for 
their successful implementation.

Nevertheless, brokers and conveners must establish an effective means of making potential beneficiaries of this 
training aware of its availability. Data providers and analytical partners are also needed, along with the financial 
support of funding partnerships.
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Assessing the full range of actors and entities necessary to leverage the value of EO data for development is  
beyond the scope of this research. However, drawing from the structures proposed by the World Development 
Report (World Bank Group, 2021), it is clear that a robust framework for building the EO data needed for SDG 
attainment starts with producing fit-for-purpose data that is reusable by many of society’s institutions (TReNDS, 2020).  
Institutions that take EO data through the segments of the data value chain must demonstrate human resource  
capacities, have well-defined policies and processes, reliable and scalable infrastructure, and effective governance 
arrangements that ensure the process adheres to local social norms and conventions. We’ve developed an initial  
framework (see Figure 4 below) to conceptualize these needs. The framework is sustained by capable and ethical 
people, supporting laws/regulations, policy frameworks, and key stakeholders that are empowered to act and are 
driven by their interest in harnessing this vital data source for sustainable development.

7. 	Reflections on Future Work

Figure 4: A Framework to Ensure EO Data Support SDG Attainment  

Extensions to the Framework
For future potential work, we recommend extending the framework to reflect activities mapped on a scale from local 
through national and international levels. This is essential, as collaboration and partnership include international 
exchanges of data, data products, and platforms, as well as the incorporation of locally-derived data, particularly 
through contributions of “citizen scientists.” Global entities must facilitate knowledge exchange and collaboration 
reflecting the ever-increasing localization of SDG decision-making. 

Citizens should be empowered to play an integral role in achieving sustainable development. This is the nature of 
the consultation process that takes place in establishing and reviewing national action plans. Citizen Science is one 
avenue for this to occur because it empowers local people to inform decision-makers and engenders a two-way flow 
of information. Further, as local actors contribute to national reporting, the acceptance and adoption of findings 
become broader and deeper because everyone has a sense of ownership. 
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This is a massive task, and not one assessment tool or analysis can cover such a span of actions and actors. However, 
work to identify existing tools and approaches to assess elements of these processes and identify remaining gaps 
in these tools could help formulate effective partnerships to help Global South EO centers unleash the full potential 
of EO data.

Deriving Value From EO Data
SDSN TReNDS’ earlier work on big data for national SDG monitoring introduced a formal maturity model that  
provides an intuitive framework to understand the current state and progress of NSOs to derive value from big 
data. The same model applies equally to government centers engaged in deriving value from EO data. Big data 
maturity is categorized in one of five stages: nascent, pre-adoption, early implementation, proficient, and mature.  
As government EO centers move through these stages, they require different partners and partnership models to 
gain greater value from their investments.

The Nascent Stage represents a pre-EO data environment. In this stage, the EO Centers have a low awareness of big 
data and the potential value for official statistics and SDG monitoring.

The Early Implementation Stage is typically characterized by a few pilots that become more established. There 
is generally at least one executive sponsor involved, however broader interest is likely growing as pilots deliver 
successful outcomes.

As organizations move from early adoption to the more mature production stages, they need to overcome a 
“chasm.” While pilot applications have been deployed, gaps may remain in terms of capability development and the 
governance context, including securing ongoing funding.

Reaching the Proficient and Mature stages means an organization has well-established, ongoing EO data programs 
that are executed as budgeted. 

It is through this comprehensive framework that we can arrive at a series of conclusions to demonstrate effective 
approaches, identify areas of potential for improvement, and suggest policies to increase the effectiveness of big 
data and the sub-systems of which they are comprised. 

A second key extension to the framework accounts for the maturity of an organization’s current state and the steps 
needed to progress to higher states of maturity. They generally include a sequence of levels or stages that define a 
path from the lowest (initial) to the highest (ultimate) state of maturity based on a set of attributes, such as the four 
high-level characteristics used in this paper.

Once the organization’s attributes under the three characteristics are determined, EO data maturity is categorized in 
one of five stages: nascent, pre-adoption, early implementation, proficient, and mature. We have described earlier 
how different partners are required for different segments of the EO data value chain. For example, for organizations 
exploring the potential of EO data for the first time (nascent stage), it is critical for data providers and analytical 
partners not to oversell EO as a “magic bullet”. Instead, effectively (and accurately) convey the potential of EO to aid 
decision-making. However, as organizations move through these maturity stages, they require different services 
from partners and partnership models to gain greater value from their investments. 
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This paper has outlined the range of activities underway to harness EO data for the SDG agenda, with a particular 
focus on the Global South. It also documents the experiences of countries in West Africa in harnessing EO data and 
highlights key supporting partnerships to advance the use of this data at the national level. 

While big data, specifically EO, offers great opportunities, challenges exist for bringing them to scale. In spite of 
increasingly open access to a variety of imagery, access is constrained by the ITC capacity in the region, and as more 
sophisticated imagery platforms are developed, human capacity requirements may constrict the region’s ability to 
exploit these new sources and methodologies. Furthermore, more is required to align partners with entities to ensure 
EO data contributes to relevant and appropriate development decisions. As the trend for local development decision-
making that is evidence-based and timely continues, EO data will only become even more important.

8. Conclusion
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